Odpowiedź :
[tex]Dane:\\ n=3\\ n=2\\ E_1=-13,6eV\\ r_1=0,53*10^{-10}m\\ Oblicz:\\ r_3=?\\ E_3=?\\ Ef=?\\ Rozwiazanie:\\ r_n=r_1*n^2\\ r_3=0,53*10^{-10}*3^2\\ r_3=4,77*10^{-10}m\\\\ E_n=\frac{E_1}{n^2}\\\\ E_3=\frac{-13,6}{3^2}\\\\ E_3=-1,51eV\\\\ E_2=\frac{-13,6}{2^2}\\\\ E_2=-3,4eV\\\\ Ef=E_3-E_2\\ Ef=-1,51-(-3,4)\\ Ef=1,89eV\\\\ Ef=\frac{hc}{\lambda}\Rightarrow \lambda=\frac{hc}{E}\\\\ \lambda=\frac{4,14*10^{-15}*3*10^8}{1,89}\\\\ \lambda=6,57*10^{-7}m=657nm[/tex]
E₁ = -13,6eV
r₁ = 5,3 x 10⁻¹¹m
h = 6,63 x 10⁻³⁴Js
a)
r₃ = n²r₁
r₃ = 3² x 5,3 x 10⁻¹¹m = 47,7 x 10⁻¹¹m
b)
En = E₁/n²
E₃ = -13,6eV/3² = -1,5eV
c)
E₂ = -13,6eV/2² = -3,4eV
E₃ = -1,5eV
ΔE = -1,5eV - (-3,4ev) = 1,9eV = 3,04 x 10⁻¹⁹J
E= hc/λ => λ = hc/E
λ = 6,63 x 10⁻³⁴Js x 3 x 10⁸m/s / 3,04 x 10⁻¹⁹J = 6,54 x 10⁻⁷m
----------------------------------------------------------------------------------------------------
Litterarum radices amarae sunt, fructus iucundiores
Pozdrawiam :)