Rozwiązane

wyznacz taki wielomian W(x), że po przedzieleniu go przez 4x²+3 otrzymamy wielomian 3x-2 oraz reszte 6x+5



Odpowiedź :

Kosmo
W(x)/4x²+3=Q(x)+R/4x²+3
W(x)=Q(x)*(4x²+3)+R
W(x)=(3x-2)(4x²+3)+6x+5=12x³-8x²+9x-6+6x+5=12x³-8x²+15x-1
(4x²+3)(3x-2)+6x+5= 12x³-8x²+9x-6+6x+5=12x³-8x²+15x - 1
Ten wielomian to W(x)=12x³-8x²+15x - 1
bo skoro W(x) : 4x²+3=3x+2 i reszta 6x+5
to W(x)= (4x²+3)(3x+2)+6x+5