Odpowiedź :
[tex]v_1=40\frac{km}{h}\\\\ v_2=60\frac{km}{h}\\\\ v_{sr}=\frac{s_1+s_2}{t_1+t_2},\ gdzie\ s_1=s_2\\\\ v_{sr}=\frac{2s}{t_1+t_2}\\\\ v=\frac{s}{t}\Rightarrow t=\frac{s}{v}\\\\ v_{sr}=\frac{2s}{\frac{s}{v_1}+\frac{s}{v_2}}\\\\ v_{sr}=\frac{2}{\frac{1}{v_1}+\frac{1}{v_2}}\\\\ v_{sr}=\frac{2v_1*v_2}{v_1+v_2}\\\\ v_{sr}=\frac{2*40*60}{40+60}\\\\ v_{sr}=\frac{4800}{100}\\\\ v_{sr}=48\frac{km}{h}[/tex]
Korzystam ze średniej harmonicznej;
[tex]v_{sr} = \frac{2}{\frac{1}{40} + \frac{1}{60}} = \frac{2}{\frac{3}{120} + \frac{2}{120}} = \frac{2}{\frac{5}{120}} = \frac{2 \cdot 120}{5} = 48 [\frac{km}{h}][/tex]
----------------------------------------------------------------------------------------------------
Litterarum radices amarae sunt, fructus iucundiores
Pozdrawiam :)