\frac{12cm\cdot 16cm}{2} = \frac{\sqrt{(12cm)^2 + (16cm)^2}\cdot r}{2} |\cdot 2
192cm^2 = 20r_{cm} |:20cm
r = 9,6cm
.
l_1 = 12cm
l_2 = 16cm
P_1 = \Pi\cdot r\cdot l_1 = \Pi\cdot 9,6cm\cdot 16cm = 153,6\Pi cm^2
P_2 = \Pi\cdot r\cdot l_2 = \Pi\cdot 9,6cm\cdot 12cm = 115,2\Pi cm^2
P = P_1 + P_2 = 268,8\Pi cm^2
\frac{9,6cm}{H_1} = \frac{12cm}{16cm}
(12H_1)cm = 153,6cm^2 |:12cm
H_1 = 12,8cm
H_2 = 20cm - 12,8cm = 7,2cm
Mamy obie wysokości, teraz V_1 i V_2 - objetości większego i mniejszego stożka, a V - objętość całej figury.
V_1 = \frac{1}{3}\cdot \Pi \cdot (9,6cm)^2\cdot 12,8cm = 393,216\Pi cm^3
V_2 = \frac{1}{3}\cdot \Pi \cdot (9,6cm)^2\cdot 7,2cm = 221,184\Pi cm^3
V = 614,4\Pi cm^3
P = 268,8\Pi cm^2
V = 614,4\Pi cm^3