AxecExec
Rozwiązane

Przestaw liczbę w postaci aᵐ, gdzie m jest liczbą całkowitą.
P.S. Nie wiem jak dodać symbol mnożenia. Używam * jako mnożenie.

a) [tex]3^{4} * (81 * 9^{-6})^{-1}[/tex]
b) [tex]125^{3} * 0.2^{-7}[/tex]
c) [tex]0.01 * 16 * 5^{4}[/tex]
d) [tex]2^{4} * 9^{2} * 36^{-5}[/tex]
e) [tex]32^{-2} : (64^{3} * (\frac{1}{2} ) ^{-3} )[/tex]



Odpowiedź :

a)  

3^4·(81·9^-6)^-1=3^4·(9²·9^-6)^-1=(3²)²·(9^-4)^-1=9²·9^4=9^6

b)

125³·(0,2)^-7=(5³)³·(1/5)^-7=5^9·5^7=5^16

c)

0,01·16·5^4=1/100·16·5^4=16/100·5^4=4/25·5^4=4/5²·5^4=4·5²=4·25=100

d)

2^4·9^²·36^-5=2^4·9²·(4·9)^-5=2^4·9²·4^-5·9^-5=(2²)²·4^-5·9^-3=4²·4^-5·9^-3=

=4^-3·9^-3=(4·9)^-3=36^-3

e)

32^-2:(64³·(1/2)^-3)=(2^5)^-2:((2^6)³·2³)=2^-10:(2^18·2³)=2^-10:2^21=2^-31

[tex]a)\\3^{4}\cdot(81\cdot9^{-6})^{-1} = 3^{4}\cdot(3^{4}\cdot(3^{2})^{-6})^{-1} = 3^{4}\cdot(3^{4}\cdot3^{-12})^{-1} = 3^{4}\cdot(3^{-8})^{-1} = 3^{4}\cdot3^{8} = 3^{12}[/tex]

[tex]b)\\125^{3}\cdot0,2^{-7} = (5^{3})^{3}\cdot(\frac{2}{10})^{-7} = 5^{9}\cdot(\frac{1}{5})^{-7} = 5^{9}\cdot5^{7} = 5^{16}[/tex]

[tex]c)\\0,01\cdot16\cdot5^{4} = 0,16\cdot5^{4} = \frac{16}{100}\cdot5^{4} = \frac{4}{25}\cdot5^{4} = \frac{2^{2}}{5^{2}}\cdot5^{4} =2^{2}\cdot5^{2} = (2\cdot5)^{2} = 10^{2}[/tex]

[tex]d)\\2^{4}\cdot9^{2}\cdot36^{-5} = 2^{4}\cdot(3^{2})^{2}\cdot(6^{2})^{-5} =2^{4}\cdot3^{4}\cdot6^{-10} = 6^{4}\cdot6^{-10} = 6^{-6}[/tex]

[tex]e) \ 32^{-2}:(64^{3}\cdot(\frac{1}{2})^{-3}) = (2^{5})^{-2}:((2^{6})^{3}\cdot2^{3}) = 2^{-10}:(2^{18}\cdot2^{3}) = 2^{-10}:2^{21} = 2^{-31}[/tex]

Wyjaśnienie:

[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\a^{m}:a^{n} = a^{m-n}\\\\(a^{m})^{n} = a^{m\cdot n}\\\\(\frac{a}{b})^{-n} = (\frac{b}{a})^{n}[/tex]

Inne Pytanie