Zadanie w załączniku na zdjęciu, proszę o rozwiązanie.



Zadanie W Załączniku Na Zdjęciu Proszę O Rozwiązanie class=

Odpowiedź :

Odpowiedź:

(∛25+4+∛40)*(∛5-2)= ∛125-2∛25+4∛5-8+∛200-2∛40=

5-2∛25+4∛5-8+ 2∛25-4∛5=-3

a) log ₂0,125= log ₂ (1/8)= log ₂8⁻¹= log ₂ 2 ⁻³=-3

odp. a jest poprawna

b)

log ₂0,25= log₂ (1/4)= log₂ 4⁻¹= log ₂2⁻²=-2

c)

log ₂0,5=log₂ 2⁻¹=-1

d)

log ₂5

Szczegółowe wyjaśnienie:

2.

[tex](\sqrt[3]{25} + 4 + \sqrt[3]{40})\cdot(\sqrt[3]{5}-2) = \sqrt[3]{25\cdot5}-2\sqrt[3]{25} +4\sqrt[3]{5}-8+\sqrt[3]{40\cdot5} -2\sqrt[3]{40}=\\\\=\sqrt[3]{125}-2\sqrt[3]2{5}+4\sqrt[3]{5}-8+\sqrt[3]{200}-2\sqrt[3]{8\cdot5}=\\\\=\sqrt[3]{5^{3}}-2\sqrt[3]{25}+4\sqrt[3]{5}-8 +\sqrt[3]{8\cdot25}-2\cdot2\sqrt[3]{5} =\\\\=5-2\sqrt[3]{25}+4\sqrt[5]{5}-8+2\sqrt[3]{25}-4\sqrt[3]{5} = -3[/tex]

[tex]a) \ log_{2}0,125 = log_{2}\frac{125}{100} = log_{2}\frac{1}{8} = log_{2}2^{-3} = -3\\\\b) \ log_{2}0,25 = log_{2}\frac{25}{100} = log_{2}\frac{1}{4} = log_{2}2^{-2} = -2 \neq -3\\\\c) \ log_{2}0,5 = log_{2}\frac{1}{2} = log_{2}2^{-1} =-1 \neq -3\\\\d) \ log_{2}5 \neq -3[/tex]

[tex]Odp. \ a)[/tex]