Odpowiedź :
1. a) Wielomian v(x) jest stopnia trzeciego, ponieważ najwyższą potęgą stojącą przy niewiadomej x jest 3.
Po uporządkowaniu, czyli ustawieniu niewiadomych wraz ze współczynnikami od najwyższej potęgi:
v(x) = [tex]x^3 - 6x^2 - 4[/tex]
[tex]a_{3}[/tex] = 1
[tex]a_{2}[/tex] = -6
[tex]a_1[/tex] = 0
[tex]a_0[/tex] = -4
b) wśród podanych żaden z wielomianów nie jest stopnia piątego
2. w(10) = -10000 + 5000 - 40 - 10 = -5050
w(-1/2) = -1/16 - 5/8 + 2 - 10 = [tex]-8\frac{11}{16}[/tex]
w(2) = -16 + 40 - 8 - 10 = 6
w(-3) = -81 - 135 + 12 - 10 = -214
Pozdrawiam :)