Odpowiedź :
a)
[tex]\frac{x-1}{3x-3}=\frac{-1}{2x}[/tex]
[tex]\frac{x-1}{3(x-1)} = \frac{-1}{2x}[/tex]
x ≠ 1 ∧ x ≠ 0
D = R \ {0,1}
[tex]2x(x-1) = -3(x-1)\\\\2x^{2}-2x = -3x+3\\\\2x^{2}-2x+3x-3 = 0\\\\2x^{2}+x-3 = 0\\\\a = 2, \ b = 1, \ c = -3\\\\\Delta} = b^{2}-4ac = 1^{2}-4\cdot2\cdot(-3) = 1+24 = 25\\\\\sqrt{\Delta} = \sqrt{25} = 5\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-1-5}{2\cdot2} = -\frac{6}{4} = -1,5\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{-1+5}{4} = \frac{4}{4} = 1 \ \ \not \in \ D\\\\x = -1,5[/tex]
b)
[tex](x+1)(x-3)(x^{2}-25)=0\\\\(x+1)(x-3)(x+5)(x-5) = 0\\\\x+1 = 0 \ \vee \ x-3 = 0 \ \vee \ x+5 = 0 \ \vee \ x-5 = 0\\\\x = -1 \ \vee \ x = 3 \ \vee \ x = -5 \ \vee \ x = 5\\\\x \in \{-5, -1, 3, 5\}[/tex]
Odpowiedź:
[tex]\frac{x-1}{3x-3}[/tex] = [tex]\frac{-1}{2x}[/tex] zał. 3x-3≠0 ⇒x≠ 1 D=R \ { 1 , 0 }
2x≠0 ⇒x≠0
2x×(x-1)=(-1)×(3x-3)
2[tex]x^{2}[/tex] - 2x = - 3x +3
2[tex]x^{2}[/tex] + x - 3=0
Δ=1+24 = 25 ,√Δ=5
[tex]x_{1}[/tex]=[tex]\frac{-1-5}{4}[/tex]= - 1,5 ∈ D
∨ ∧ x∈D , D=R \ { 1 , 0 }
[tex]x_{2}[/tex]=[tex]\frac{-1+5}{4}[/tex]= 1 ∉ D
Odp. x = - 1,5
b)
(x+1)(x-3)([tex]x^{2}[/tex]-25)=0
(x+1)(x-3)(x-5)(x+5)=0
x+1=0 ∨ x-3=0 ∨ x-5=0 ∨ x+5=0
Odp. x = - 1 ∨ x = 3 ∨ x = 5 ∨ x = - 5
Szczegółowe wyjaśnienie: