Odpowiedź :
Odpowiedź:
zad 5
x = (10¹⁰)¹⁰ = 10¹⁰⁰
y = 10¹⁰ * 10¹⁰ = 10¹⁰⁺¹⁰ = 10²⁰
z = 10¹⁰⁰/10¹⁰ = 10¹⁰⁰⁻¹⁰ = 10⁹⁰
t = 100¹⁰/10¹⁰ = (10²)¹⁰/10¹⁰ = 10²⁰/10¹⁰ = 10²⁰⁻¹⁰ = 10¹⁰
Porządek rosnący
t , y , z , x
zad 6
2⁵ * 3⁶ * x = 6⁷
2⁵ * 3⁶ * x = 2⁷ * 3⁷
x = (2⁷ * 3⁷)/(2⁵ * 3⁶) = 2⁷⁻⁵ * 3⁷⁻⁶ = 2² * 3 = 4 * 3 = 12
zad 7
3¹⁹ + 3²⁰ + 3²¹ < 3²²
3¹⁹(1 + 3 + 3²) < (3¹⁹ * 3³)
3¹⁹(4 + 9) < 3¹⁹ * 27
3¹⁹ * 13 < 3¹⁹ * 27 | : 3¹⁹
13 < 27 c.n.u
5.
[tex]x = (10^{10})^{10} = 10^{10\cdot10} = 10^{100}\\\\y = 10^{10}\cdot10^{10} =10^{10+10} = 10^{20}\\\\z = \frac{10^{100}}{10^{10}} = 10^{100-10} = 10^{90}\\\\t = \frac{100^{10}}{10^{10}} = \frac{(10^{2})^{10}}{10^{10}} = \frac{10^{2\cdot10}}{10^{10}} = \frac{10^{20}}{10^{10}} = 10^{20-10} = 10^{10}\\\\10^{10} < 10^{20} < 10^{90} < 10^{100}\\\\t < y < z < x[/tex]
6.
[tex]2^{5}\cdot3^{6}\cdot x = 6^{7}\\\\2^{5}\cdot3^{6}\cdot x = (2\cdot3)^{7}\\\\2^{5}\cdot3^{6}\cdot x = 2^{7}\cdot3^{7} \ \ |:(2^{5}\cdot3^{6})\\\\x = 2^{7-5}\cdot3^{7-6}\\\\x = 2^{2}\cdot3\\\\x = 4\cdot3\\\\x = 12[/tex]
7.
[tex]3^{19}+3^{20}+3^{21} < 3^{22}\\\\3^{19}\cdot3^{19}\cdot3+3^{19}\cdot3^{2} < 3^{22}\\\\3^{19}(1+3+3^{2}) < 3^{19}\cdot3^{3}\\\\3^{19}(4+9) < 3^{19}\cdot27}\\\\3^{19}\cdot13 < 3^{19}\cdot27 \ \ /:3^{19}\\\\13 < 27\\\\c.n.u.[/tex]