ZADANIE 7 (1 PKT)
Do przedziału 24/32,25/32 należy liczba
A) 48/64
B)49/64
C) 50/64
D) 51/64





Odpowiedź :

Roma

Jeśli przedział jest otwarty  [tex](\frac{24}{32}, \ \frac{25}{32}) = (\frac{48}{64}, \ \frac{50}{64})[/tex], to:

[tex]A. \ \frac{48}{64} \notin (\frac{48}{64}, \ \frac{50}{64}) = (\frac{24}{32}, \ \frac{25}{32}) \\\\ B. \ \ \frac{49}{64} \in (\frac{48}{64}, \ \frac{50}{64}) = (\frac{24}{32}, \ \frac{25}{32}) \\\\ C. \ \frac{50}{64} \notin (\frac{48}{64}, \ \frac{50}{64}) = (\frac{24}{32}, \ \frac{25}{32}) \\\\ D. \ \ \frac{51}{64} \notin (\frac{48}{64}, \ \frac{50}{64}) = (\frac{24}{32}, \ \frac{25}{32})[/tex]

Odp. B

------------

Jeśli przedział jest zamknięty  [tex]\langle \frac{24}{32}, \ \frac{25}{32} \rangle = \langle \frac{48}{64}, \ \frac{50}{64} \rangle[/tex], to:

[tex]A. \ \frac{48}{64} \in \langle \frac{48}{64}, \ \frac{50}{64} \rangle=\langle \frac{24}{32}, \ \frac{25}{32} \rangle \\\\ B. \ \frac{49}{64} \in \langle \frac{48}{64}, \ \frac{50}{64} \rangle=\langle \frac{24}{32}, \ \frac{25}{32} \rangle[/tex]

[tex]C. \ \frac{50}{64} \in \langle \frac{48}{64}, \ \frac{50}{64} \rangle=\langle \frac{24}{32}, \ \frac{25}{32} \rangle \\\\ D. \ \frac{51}{64} \notin \langle \frac{48}{64}, \ \frac{50}{64} \rangle=\langle \frac{24}{32}, \ \frac{25}{32} \rangle[/tex]

Odp. A, B i C.