Odpowiedź :
Odpowiedź:
Brakujące długości boków zobaczyłam literą x
a)
[tex] {x}^{2} + {8}^{2} = {17}^{2} \\ {x}^{2} + 64 = 289 \\ {x}^{2} = 225 \\ x = 15[/tex]
b)
[tex] {x}^{2} + {( \sqrt{17} )}^{2} = {(7 \sqrt{2} )}^{2} \\ {x}^{2} + 17 = 98 \\ {x}^{2} = 81 \\ x = 9[/tex]
c)
[tex] {( \sqrt{5} )}^{2} + {(2 \sqrt{5} )}^{2} = {x}^{2} \\ 5 + 20 = {x}^{2} \\ {x}^{2} = 25 \\ x = 5[/tex]
Odpowiedź:
[tex]a) {x}^{2} + {8}^{2} = {17}^{2} \\ {x}^{2} + 64 = 289 \\ {x}^{2} = 289 - 64 \\ {x}^{2} = 225 \\ x = \sqrt{225} \\ x = 15[/tex]
[tex]b) {y}^{2} + ( \sqrt{17} {)}^{2} = (7 \sqrt{2} {)}^{2} \\ {y}^{2} + 17 = 49 \times 2 \\ {y}^{2} + 17 = 98 \\ {y}^{2} = 98 - 17 \\ {y}^{2} = 81 \\ y = \sqrt{81} \\ y = 9[/tex]
[tex]c)( \sqrt{5} {)}^{2} + (2 \sqrt{5} {)}^{2} = {z}^{2} \\ 5 + 4 \times 5 = {z }^{2} \\ 5 + 20 = {z}^{2} \\ {z}^{2} = 25 \\ z = \sqrt{25} \\ z = 5[/tex]