Odpowiedź:
[tex]\frac{2^{16}\cdot5^{8}}{2^{5}\cdot(5^{2})^{3}}:\frac{2^{3}}{5^{6}}=\frac{2^{16}\cdot5^{8}}{2^{5}\cdot5^{6}}\cdot\frac{5^{6}}{2^{3}} = \frac{2^{16}\cdot5^{8}\cdot5^{6}}{2^{5}\cdot5^{6}\cdot2^{3}} =\frac{2^{16}\cdot5^{14}}{2^{8}\cdot5^{6}} = 2^{8}\cdot5^{8} = (2\cdot5)^{8} = 10^{8}[/tex]
Szczegółowe wyjaśnienie:
[tex]a^{m}\cdot a^{m} = a^{m+n}\\a^{m}:a^{n} = a^{m-n}\\(a^{m})^{n} = a^{m\cdot n}[/tex]