Odpowiedź:
[tex]g(x)=x^{2} +2x[/tex]
Szukamy x₁ i x₂, dla których:
[tex]x_{1} ^{2} +2x_{1} =x^{2} _{2} +2x_{2} \\oraz\\x_{1} -x_{2} =3 \ czyli \ x_{1} =x_{2} +3, zatem[/tex]
[tex](x _{2} +3)^{2} +2(x _{2} +3)=x^{2} _{2} +2x_{2} \\x^{2} _{2} +6x_{2} +9+2x_{2} +6=x^{2} _{2}+2x_{2} \\6x_{2} +15=0\\6x_{2}=-15\\x_{2}=-\frac{5}{2} =-2\frac{1}{2} \\x_{1}= -2\frac{1}{2} +3\\x_{1}=-\frac{5}{2} +\frac{6}{2} \\x_{1}=\frac{1}{2}[/tex]
Odp. [tex]x_{1}= \frac{1}{2} , x_{2}=-2\frac{1}{2}[/tex]