Odpowiedź:
[tex]a)\\\\(x+3)^2-(x+2)^2\leq 0\\\\x^2+6x+9-(x^2+4x+4)\leq 0\\\\x^2+6x+9-x^2-4x-4\leq 0\\\\2x+5\leq 0\\\\2x\leq -5\ \ /:2\\\\x\leq -\frac{5}{2}\\\\x\leq -2\frac{1}{2}\\\\x\in(-\infty,-2\frac{1}{2}\rangle[/tex]
[tex]b)\\\\(4-x)^2+(2+x)^2>2x^2\\\\16-8x+x^2+4+4x+x^2>2x^2\\\\20-4x+2x^2>2x^2\\\\-4x+2x^2-2x^2>-20\\\\-4x>-20\ \ /:(-4)\\\\x<5\\\\x\in(-\infty,5)[/tex]
[tex]c)\\\\9x^2+(2+3x)(2-3x)\geq 6x\\\\9x^2+4-9x^2\geq 6x\\\\-6x\geq -4\ \ /:(-6)\\\\x\leq \frac{4}{6}\\\\x\leq \frac{2}{3}\\\\x\in(-\infty,\frac{2}{3}\rangle[/tex]