Odpowiedź :
[tex]2 {x}^{3} - 5 {x}^{2} + 2x = 0 \\ x( {2x}^{2} - 5x + 2) = 0 \\ x = 0 \: \: v \: \: {2x}^{2} - 5x + 2 = 0 \\ a = 2 \: b = - 5 \: c = 2 \\ delta = {b}^{2} - 4ac \\ delta = {( - 5)}^{2} - 4 \times (2 \times 2) = 25 - 16 = 9 \\ delta = 9 \\ \sqrt{9} = 3[/tex]
[tex]x1 = \frac{ - ( - 5) - 3}{2 \times 2} = \frac{5 - 3}{4} = \frac{2}{4} = \frac{1}{2} \\ x2 = \frac{ - ( - 5) + 3}{2 \times 2} = \frac{5 + 3}{4} = \frac{8}{4} = \frac{2}{1} = 2 \\ x1 = \frac{1}{2} \: x2 = 2[/tex]
rozwiązania są trzy:
x=0, x1= 1/2, x2=2