Zamien funkcje na postac kanoniczna i iloczynowa.



Zamien Funkcje Na Postac Kanoniczna I Iloczynowa class=

Odpowiedź :

Odpowiedź:

15. f(x) = -5[tex]x^{2}[/tex] + x + 4

Δ = 1 - 4(-5)(4) = 1 + 80 = 81

[tex]\sqrt{delta}[/tex] = 9

x1 = (-1 - 9)/-10 = -10/-10 = 1

x2 = (-1 + 9)/-10 = 8/-10 = -4/5

p = -1/-10 = 1/10

q = -9/-20 = 9/20

Kanoniczna = -5(x - 1/10)^2 + 9/20

Iloczynowa = -5(x - 1)(x + 4/5)

16.  f(x) = [tex]x^{2}[/tex] - 8x + 15

Δ = 64 - 4(15) = 4

[tex]\sqrt{delta}[/tex] = 2

x1 = (8 - 2)/2 = 6/2 = 3

x2 = (8 + 2)/2 = 10/2 = 5

p = 8/2 = 4

q = -2/4 = -1/2

Kanoniczna = (x - 4)^2 - 1/2

Iloczynowa = (x - 3)(x - 5)

17. f(x) = -[tex]x^{2}[/tex] + 7x - 12

Δ = 49 - 4(-1)(-12) = 49 - 48 = 1

[tex]\sqrt{delta}[/tex] = 1

x1 = (-7 - 1)/-2 = -8/-2 = 4

x2 = (-7 + 1)/-2 = -6/-2 = 3

p = -7/-2 = 7/2

q = -1/-4 = 1/4

Kanoniczna = -(x - 7/2)^2 + 1/4

Iloczynowa = -(x - 4)(x - 3)

18. f(x) = [tex]x^{2}[/tex] - 3x - 4

Δ = 9 - 4(-4) = 9 + 16 = 25

[tex]\sqrt{delta}[/tex] = 5

x1 = (3 - 5)/2 = -2/2 = -1

x2 = (3 + 5)/2 = 8/2 = 4

p = 3/2

q = -5/4

Kanoniczna = (x - 3/2)^2 - 5/4

Iloczynowa = (x + 1)(x - 4)

19. f(x) = -3[tex]x^{2}[/tex] + 2x + 5

Δ = 4 - 4(-3)(5) = 4 + 60 = 64

[tex]\sqrt{delta}[/tex] = 8

x1 = (-2 - 8)/-6 = -10/-6 = 5/3

x2 = (-2 + 8)/-6 = 6/-6 = -1

p = -2/-6 = 1/3

q = -8/-12 = 2/3

Kanoniczna = -3(x - 1/3)^2 + 2/3

Iloczynowa = -3(x - 5/3)(x + 1)