Odpowiedź:
[tex]Zad.14\\\\a)\ \ (x+1)(x^2-x+1)=x^3-x^2+x+x^2-x+1+1=x^3+1\\\\\\b)\ \ (2p-1)(p^2+2p-3)=2p^3+4p^2-6p-p^2-2p+3=2p^3+3p^2-8p+3\\\\\\c)\ \ (3+2u)(5u^2-u+4)=15u^2-3u+12+10u^3-2u^2+8u=10u^3+13u^2+5u+12\\\\\\d)\ \ (y+1)(y^3+y^2+y+1)=y^4+y^3+y^2+y+y^3+y^2+y+1=y^4+2y^3+2y^2+2y+1\\\\\\e)\ \ (s-2)(s^3-s^2+s-1)=s^4-s^3+s^2-s-2s^3+2s^2-2s+2=s^4-3s^3+3s^2-3s+2\\\\\\f)\ \ (2m-1)(2-3m+5m^2-m^3)=4m-6m^2+10m^3-2m^4-2+3m-5m^2+m^3=\\\\=-2m^4+11m^3-11m^2+7m-2[/tex]