Rozwiąż równanie trygonometryczne: [tex]sinx *tgx -\sqrt{3} =tgx - \sqrt{3} sinx[/tex]

Zadanie próbowałam rozwiązać, ale gdzieś robię błąd, bo w odpowiedziach sinus jest wykluczony. Proszę o pomoc :)



Rozwiąż Równanie Trygonometryczne Texsinx Tgx Sqrt3 Tgx Sqrt3 Sinxtex Zadanie Próbowałam Rozwiązać Ale Gdzieś Robię Błąd Bo W Odpowiedziach Sinus Jest Wykluczon class=

Odpowiedź :

Rozwiązanie:

[tex]sinx*tgx-\sqrt{3} =tgx-\sqrt{3}sinx[/tex]

Musimy założyć, że:

[tex]cosx\neq 0\\x\neq \frac{\pi}{2} +k\pi[/tex]

Dalej mamy:

[tex]sinx*tgx-\sqrt{3}-tgx+\sqrt{3} sinx=0\\tgx(sinx-1)+\sqrt{3} (sinx-1)=0\\(sinx-1)(tgx+\sqrt{3} )=0\\sinx=1 \vee tgx=-\sqrt{3} \\x=\frac{\pi}{2}+2k\pi \vee x=-\frac{\pi }{3}+k\pi[/tex]

Pierwsze rozwiązanie musimy odrzucić ze względu na założenie, więc:

[tex]x=k\pi -\frac{\pi}{3} , k\in \mathbb{Z}[/tex]