Odpowiedź :
Odpowiedź:
Poziom A
C)
20/(x + 1) = 5 | * 5
założenie:
x + 1 ≠ 0
x ≠ - 1
D : x ∈ R \ { - 1 }
20 = 5(x + 1)
20 = 5x + 5
5x = 20 - 5 = 15
x = 15/5 = 3
liczba 4 nie jest rozwiązaniem równania
D)
5(x - 4) - x = 8
5x - 20 - x = 8
4x = 8 + 20 = 28
x = 28/4 = 7
Liczba 7 jest rozwiązaniem równania
Poziom B
C)
15/(x + 1) = 3
założenie:
x + 1 ≠ 0
x ≠ - 1
D: x ∈ R \ {- 1 }
15 = 3(x + 1)
15 = 3x + 3
3x = 15 - 3 = 12
x = 12/3 = 4
Liczba 4 jest rozwiązaniem równania
D)
(x + 5)(x - 4) = 0
x² + 5x - 4x - 20 = 0
x² + x - 20 = 0
a = 1 , b = 1 , c = - 20
Δ = b² - 4ac = 1² - 4 * 1 *(- 20) = 1 + 80 = 81
√Δ = √81 = 9
x₁ = ( - b - √Δ)/2a = ( - 1 - 9)/2 = - 10/2 = - 5
x₂ = (- b + √Δ)/2a = (- 1 + 9)/2 = 8/2 = 4
Liczby (- 5) i 4 są rozwiązaniami równania
Poziom C
C)
5(3 + a) = 10a
15 + 5a = 10a
- 10a + 5a = - 15
- 5a = - 15
5a = 15
a = 15/5 = 3
Liczba 3 jest rozwiązaniem równania
D)
7 - x = 12/(x + 1)
założenie:
x + 1 ≠ 0
x ≠ - 1
D: x ∈ R \ { - 1 }
(x + 1)(7 - x) = 12
7x + 7 - x² - x = 12
- x² + 6x + 7 - 12 = 0
- x² + 6x - 5 = 0
a = - 1 , b = 6 , c = - 5
Δ = b² - 4ac = 6² - 4 * (- 1) * (- 5) = 36 - 20 = 16
√Δ = √16 = 4
x₁ = ( - b - √Δ)/2a = (- 6 - 4)/(- 2) = - 10/(- 2) = 10/2 = 5
x₂ = (- b + √Δ)/2a = ( - 6 + 4)/(- 2) = - 2/(- 2) = 2/2 = 1
Liczba 3 nie jest rozwiązaniem równania
Poziom D
C)
(x - 1)(x + 1) = x² - 1
x² - 1 = x² - 1
L = P
x ∈ R więc liczby 1 , 2 , 3 są rozwiązaniem równania
D)
12/(x + 1) = x + 2
założenie:
x + 1 ≠ 0
x ≠ - 1
D: x ∈ R \ { - 1 }
12 = (x + 1)(x + 2)
12 = x² + x + 2x + 2
x² + 3x + 2 - 12 = 0
x² + 3x - 10 = 0
a = 1 , b = 3 , c = - 10
Δ = b² - 4ac = 3² - 4 * 1 * (- 10) = 9 + 40 = 49
√Δ = √49 = 7
x₁ = ( - b - √Δ)/2a = ( - 3 - 7)/2 = - 10/2 = - 5
x₂ = (- b + √Δ)/2a = (- 3 + 7)/2 = 4/2 = 2
Liczba 2 jest rozwiązaniem równania