Rozwiązanie:
[tex]log(x^{2}+4)+log2=log(x+2)+1\\D:x^{2}+4>0 \wedge x+2>0\\x>-2\\log(x^{2}+4)-log(x+2)=1-log2\\log(\frac{x^{2}+4}{x+2})=log10-log2\\ log(\frac{x^{2}+4}{x+2})=log5\\\frac{x^{2}+4}{x+2}=5\\x^{2}+4=5x+10\\x^{2}-5x-6=0\\\Delta=25-4*1*(-6)=49\\x_{1}=\frac{5+7}{2} =6 \in D\\x_{2}=\frac{5-7}{2}=-1 \in D[/tex]