Odpowiedź:
Dane:
l=1m
m=90g
A=5cm=0,05m
x=2cm
Epmax=?
Ek=?
Ep=[tex]\frac{kA^{2} }{2}[/tex]*sin²ωt Jezęli Ep=max to sin=1, więc:
Epmax=[tex]\frac{kA^{2} }{2}[/tex]
k=mω²
ω=2π/T
T=2π√(l/g)
ω=2π/(2π√(l/g))=1/√(l/g)
√(l/g)=√(1m/10m/s²)=0,1s
ω=1/0,1s=10Hz
k=0.09kg*100Hz²=9kg/s²
Epmax=(9kg/s²)*0,0025m²/2=0,01125J=11,25mJ
Ec=Ek+Ep
Ek=Ec-Ep=[tex]\frac{kA^{2} }{2}[/tex]-[tex]\frac{kx^{2} }{2}[/tex]=[tex]\frac{k}{2}[/tex](A²-x²)
Ek=4,5kg/s²(0,0025m²-0,0004m²)=4,5kg/s²*0,0021m²=0,00945J=9,45mJ