Odpowiedź :
Odpowiedź:
Szczegółowe wyjaśnienie:
tg = 12/13
tg = a/b
a=12
b=13
c=?
12^2 + 13^2 = c^2
144 + 169 = c^2
313 = c^2
c= [tex]\sqrt{313}[/tex]
sin = a/c
sin = 12/[tex]\sqrt{313}[/tex]
cos = b/c
cos = 13/[tex]\sqrt{313}[/tex]
[tex]tg\alpha = \frac{12}{13}\\\\tg\alpha = \frac{sin\alpha}{cos\alpha}\\\\\frac{sin\alpha}{cos\alpha} = \frac{12}{13}\\\\12cos\alpha = 13sin\alpha \ \ |()^{2}\\\\144cos^{2}\alpha = 169sin^{2}\alpha\\\\sin^{2}\alpha + cos^{2}\alpha = 1\\cos^{2}\alpha = 1 - sin^{2}\alpha\\\\144(1-sin^{2}\alpha) = 169sin^{2}\alpha\\\\144-144sin^{2}\alpha=169sin^{2}\alpha\\\\313sin^{2}\alpha = 144 \ \ /:313\\\\sin^{2}\alpha = \frac{144}{313}[/tex]
[tex]sin\alpha = \frac{\sqrt{144}}{\sqrt{313}} = \frac{12}{\sqrt{313}}\cdot\frac{\sqrt{313}}{\sqrt{313}} = \frac{12\sqrt{313}}{313}[/tex]
[tex]cos^{2}\alpha = \frac{169}{144}\cdot sin^{2}\alpha =\frac{169}{144}\cdot\frac{144}{313} = \frac{169}{313}\\\\cos\alpha = \frac{\sqrt{169}}{\sqrt{313}}=\frac{13}{\sqrt{313}}\cdot\frac{\sqrt{313}}{\sqrt{313}} = \frac{13\sqrt{313}}{313}[/tex]