Odpowiedź :
a) [tex](5^{3})^{4}[/tex] · [tex](5^{8})^{3}[/tex] = [tex]5^{12+24}= 5^{36}[/tex]
b) [tex]7^{54}[/tex] : [tex]7^{35}[/tex] = [tex]7^{54-35} = 7^{19}[/tex]
c) [tex](\frac{1}{3})^{36}[/tex] · [tex](\frac{1}{3})^{20}[/tex] = [tex](\frac{1}{3})^{56}[/tex]
d) [tex]0,9^{72}[/tex] ·[tex]0,9^{49}[/tex] = [tex]0,9^{121}[/tex]
7.
[tex]a) \ (5^{3})^{4}\cdot(5^{8})^{3} = 5^{12}\cdot5^{24} =5^{36}\\\\b) \ (7^{9})^{6}:(7^{5})^{7}=7^{54}:7^{35} = 7^{19}\\\\c) \ ((\frac{1}{3})^{6})^{6}\cdot((\frac{1}{3})^{5})^{4}=(\frac{1}{3})^{36}\cdot(\frac{1}{3})^{20}=(\frac{1}{3})^{56}\\\\d) \ (0,9^{9})^{8}:(0,9^{7})^{7} = 0,9^{72}:0,9^{49} =0,9^{23}[/tex]
Wyjaśnienie:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\a^{m}:a^{n} = a^{m-n}\\(a^{m})^{n} = a^{m\cdot n}[/tex]