Odpowiedź:
[tex]\huge\boxed{8,2\times13}[/tex]
Szczegółowe wyjaśnienie:
Patrz rysunek.
Skorzystamy z kosinusa (patrz tabela).
[tex]\cos58^o=\dfrac{b}{15,4}\\\\0,53=\dfrac{b}{15,4}\qquad|\cdot15,4\\\\b=8,162\approx8,2(cm)[/tex]
Długość drugiego boku możemy obliczyć za pomocą twierdzenia Pitagorasa:
[tex]a^2+8,2^2=15,4^2\\\\a^2+67,24=237,16\qquad|-67,24\\\\a^2=169,92\to a=\sqrt{169,92}\\\\a\approx13[/tex]