Odpowiedź :
[tex]49)\\\\(\frac{1}{5})^{-1}* [0,4- \frac{2}{5} :(-2)] + 2^{-1}+25^3 *( \frac{1}{25})^3-\sqrt{36}= \\\\=5* [\frac{ 4}{10}- \frac{\not{2}^1}{5}*(- \frac{1}{\not{2}^1})] + \frac{1}{2}+(25 * \frac{1}{25})^3- 6=\\\\=5* [\frac{ 2}{5}+ \frac{1}{5} ] + \frac{1}{2}+1^3- 6= \\\\=5* \frac{ 3}{5} + \frac{1}{2}+1- 6= 3-4\frac{1}{2}=-1\frac{1}{2}[/tex]
[tex]50)\\\\x= \frac{(-1)^4*(-3)^2* (\sqrt{5} )^2+(-2) :(-2)^o-(- \frac{1}{2})-1 }{ \sqrt{25}-9+ \frac{1}{2}*( \sqrt{2})^2} =\\\\\\=\frac{1*9* 5+(-2) :1+ \frac{1}{2} -1 }{5-9+ \frac{1}{2}*2} = \frac{45-2+ \frac{1}{2} -1 }{5-9+1}= \frac{42\frac{1}{2} }{-3}= \frac{85}{2}:(-3)=\\\\= \frac{85}{2}*(- \frac{1}{3})=-\frac{85}{6} =-14\frac{1}{6} \\\\75\% *x=\frac{75}{100}*(-\frac{85}{6})=\frac{\not{3}^1}{4}*(-\frac{85}{\not{6}^2})=-\frac{85}{8}=-10\frac{5}{8}[/tex]
[tex]51)\\\\\frac{ 3^2* \sqrt{\frac{1}{81}} +(1,5)^0-( \frac{1}{2})^2:\sqrt[3]{\frac{1}{64}} }{\sqrt{ 64+36} - \frac{2}{3}*( \sqrt{6})^2 }=\frac{ \not{9}^1* \frac{1}{\not{9}^1} + 1- \frac{1}{4} : \frac{1}{ 4} }{\sqrt{ 100} - \frac{2}{\not{3}^1}*\not{6}^2 }= \frac{1+1-\frac{1}{\not{4}^1}*\frac{\not{49}^1}{1}}{10-4} =\\\\\\=\frac{2-1}{6}=\frac{1}{6} \\\\\\15\%\ \ to\ \ \frac{1}{6}\\\\100\ \%\ \ to\ \ m[/tex]
[tex]m=\frac{100\%*\frac{1}{6}}{15\%}=\frac{100}{6}:15=\frac{\not{50}^{10}}{3}*\frac{1}{\not{15}^3}=\frac{10}{9}=1\frac{1}{9}\\\\odp.\ \ Liczba\ m\ wynosi\ 1\frac{1}{9}[/tex]