Odpowiedź:
a) a₁ = 6 a₃ = 20
a₃ = a₁ + 2r
20 = 6 + 2r
2r = 14
r = 7
an=a₁ +(n−1)⋅r
an = 6 + ( n-1)·7 an = 6 + 7n -7 an = 7n -1
b) a₁ = -4 a₄ = 5
a₄ = a₁ + 3r
5 = -4 + 3r
3r = 9
r = 3
an = -4 + (n-1) ⋅ 3 an = - 4 + 3n - 3 an = 3n - 7
c) a₁ = 9 a₆ = 6 i 1/2 a₆ = a₁ + 5r
6 i 1/2 = 9 + 5r
5r = - 2i1/2
r = - 1/2 an = 9 + ( n-1) ⋅(- 1/2) an = 9 - 1/2 n + 1/2 an = - 1/2 n + 9 i 1/2
d) a₁ = 13 a₁₀ = -23
a₁₀ = a₁ + 9r
-23 = 13 + 9r
9r = -36
r = -4
an = 13 + (n-1) ⋅( -4)
an = 13 - 4n + 4
an = -4n + 17
Szczegółowe wyjaśnienie: