Odpowiedź :
Odpowiedź:
a)
R = R₁ + R₂ + R₃
R₂ = R - R₁ - R₃
b)
Ep = m * g * h
m = Ep/(g * h)
c)
R = 2/3h
3R = 2h
h = 3R/2
d)
P = W/t
W = P * t
e)
T = 1/f
Tf = 1
f = 1/T
f)
P = (d₁ + d₂)/2
2P = d₁ + d₂
d₂ = 2P - d₁
g)
E = mc²
c² = E/m
c = √(E/m)
h)
Uw/Up = nw/np
Uw * np = Up * nw
np = (Up * nw)/Uw
i)
P = πr(r + l) = πr² + πrl
πrl = P - πr²
l = (P - πr²)/πr
j)
1/f = 1/x + 1/y
1/f = (x + y)/xy
xy = f(x + y) = fx + fy
xy - fy = fx
y(x - f) = fx
y = fx/(x - f)
Szczegółowe wyjaśnienie:
a) R= R1 + R2 + R3 /-R1
R-R1=R2+R3 /-R3
R2=R-R1-R3
b) Ep=m*g*h /:g*h
m=[tex]\frac{Ep}{gh}[/tex]
c) R=[tex]\frac{2}{3}[/tex]h /:[tex]\frac{2}{3}[/tex]
h= R : [tex]\frac{2}{3}[/tex]
h= R * [tex]\frac{3}{2}[/tex]
h= [tex]\frac{3R}{2}[/tex]
d) P=[tex]\frac{w}{t}[/tex] /*t
w=Pt
e) T=[tex]\frac{1}{f}[/tex] /*f
Tf=1 /:T
f=[tex]\frac{1}{T}[/tex]
f) P= [tex]\frac{d1*d2}{2}[/tex] /*2
2P=d1*d2 /:d1
d2=[tex]\frac{2P}{d1}[/tex]
g) E=m[tex]c^{2}[/tex] /:m
[tex]c^{2}[/tex]=[tex]\frac{E}{m}[/tex] /[tex]\sqrt{}[/tex]
c= [tex]\sqrt{\frac{E}{m} }[/tex]
h) [tex]\frac{Uw}{Up}[/tex]=[tex]\frac{nw}{np}[/tex] /*np
[tex]\frac{Uw}{Up}[/tex] *np =nw /:[tex]\frac{Uw}{Up}[/tex]
np= nw : [tex]\frac{Uw}{Up}[/tex]
np= nw*[tex]\frac{Up}{Uw}[/tex] = [tex]\frac{nw*Up}{Uw}[/tex]
i) P=πr(r+l) /:πr
P:πr = r+l /-r
l=(P:πr)-r
j) [tex]\frac{1}{f} =\frac{1}{x} +\frac{1}{y}[/tex] /-[tex]\frac{1}{x}[/tex]
[tex]\frac{1}{f} -\frac{1}{x}[/tex] = [tex]\frac{1}{y}[/tex] /*y
[tex](\frac{1}{f}-\frac{1}{x})*y=1[/tex] /:[tex](\frac{1}{f}-\frac{1}{x} )[/tex]
y=[tex](\frac{1}{f}-\frac{1}{x} )[/tex]