Odpowiedź
Zad 1.
a) [tex]\displaystyle \sqrt{1 \dfrac {11} {25} \: } = \sqrt{ \left( \dfrac {25} {25} + \dfrac {11} {25} \right) \: } = \sqrt{ \dfrac {36} {25} \: } = \sqrt{ \dfrac {6^2} {5^2} \: } = \dfrac {6} {5}[/tex]
b) [tex]\sqrt[3]{ \, 0,\!216 \, } = \sqrt[3]{\dfrac {216} {1000}} = \sqrt[3]{\dfrac {6^3} {10^3}} = {\dfrac {\, 6 \,} {10}[/tex]
c) [tex]\sqrt{7} \cdot \sqrt{7} = 7[/tex]
Zad 2.
a) [tex]\displaystyle \sqrt{900} - \sqrt{144} + \sqrt{4900} = 30 - 12 + 70 = 88[/tex]
b) [tex]10 \cdot \left( \sqrt{121} - 2\sqrt{25} \, \right) = 10 \cdot \left( 11 - 2 \cdot 5 \right) = 10 \cdot \left( 11 - 10 \right) = 10 \cdot 1 = 10[/tex]
c) [tex]\displaystyle 10\sqrt{3} + 7\sqrt{3} = 17\sqrt{3}[/tex]
d) [tex]\displaystyle \sqrt{2 \sqrt{2 \sqrt{4 \,}}} = \sqrt{2 \sqrt{2 \cdot 2 \,}} = \sqrt{2 \cdot 2 \,} = 2[/tex]