Odpowiedź :
a)
[tex]-5^{3} * 5^{4} = -1(5^{3}*5^{4})=-1*5^{3+4} = -5^{7}[/tex]
b)
[tex]-7^{6}*7^{5} = -1(7^{6} * 7^{5}) = -7^{11}[/tex]
c)
[tex]6^{4}*(-6)^{4} * 6 = 6^{4}*6^{4}*6=6^{9}[/tex]
d)
[tex]\frac{(-7)^{13}}{7^{4}} = -7^{13-4} = -7^{9}[/tex]
e)
[tex]5^{10}:(-5)^{4}=5^{6}\\[/tex]
f)
[tex]\frac{12^{5}}{(-12)^{3}*12} = \frac{12^{5}}{-1(12^{4})} = 12^{5} : -12^{4} = -12[/tex]
[tex]a) \ (-5)^{3}\cdot5^{4} = -5^{3}\cdot5^{4} = -5^{7}\\\\b) \ (-7)^{6}\cdot7^{5} = 7^{6}\cdot7^{5} = 7^{11}\\\\c) \ 6^{4}\cdot(-6)^{4}\cdot6 = 6^{4}\cdot6^{4}\cdot6 = 6^{9}\\\\d) \ \frac{(-7)^{13}}{7^{4}} = \frac{-7^{13}}{7^{4}} = -7^{9}\\\\e) \ 5^{10}:(-5)^{4} =5^{10}:5^{4} = 5^{6}\\\\f) \ \frac{12^{5}}{(-12)^{3}\cdot12}} = \frac{12^{5}}{-12^{3}\cdot12} = \frac{12^{5}}{-12^{4}} = -12^{1} = -12[/tex]
Szczegółowe wyjaśnienie:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\a^{m}:a^{n} = a^{m-n}[/tex]
Liczba ujemna podniesiona d potęgi nieparzystej daje liczbę ujemną.
Liczba ujemna podniesiona do potęgi parzystej daje liczbę dodatnią.