Oxve
Rozwiązane

Zapisz w postaci jednej potęgi:
a) 5^9 * 5^0 * 5/ 5^6
b) 0,2^6 * ( (0,2)^7)^2 : 0,2^5
c) (a^4)^7 * a^9 * a^5/ a^10 : a^8

Proszę na już



Odpowiedź :

a)

[tex] {5}^{9} \times {5}^{0} \times \frac{5}{ {5}^{6} } = {5}^{9} \times 1 \times \frac{5}{ {5}^{6} } = \frac{ {5}^{9} \times 5 }{ {5}^{6} } = \frac{ {5}^{10} }{ {5}^{6} } = {5}^{4} [/tex]

b)

[tex] {(0.2)}^{6} \times ({ {0.2}^{7} )}^{2} \div ({0.2)}^{5} = {(0.2)}^{6} \times {(0.2)}^{14} \div {(0.2)}^{5} = {(0.2)}^{20} \div {(0.2)}^{5} = {(0.2)}^{15} [/tex]

c)

[tex] ({ {a}^{4} )}^{7} \times {a}^{9} \times \frac{ {a}^{5} }{ {a}^{10} } \div {a}^{8} = {a}^{28} \times {a}^{9} \times \frac{ {a}^{5} }{ {a}^{10} } \div {a}^{8} = {a}^{37} \times \frac{ {a}^{5} }{ {a}^{10} } \div {a}^{8} = \frac{ {a}^{42} }{ {a}^{10} } \div {a}^{8} = {a}^{32} \div {a}^{8} = {a}^{24} [/tex]