Odpowiedź:
[tex]-x^{3} + 2x^{2} +4x \leq 0\\-x(x^{2} -2x-4)\leq 0\\x(x^{2} -2x -4)\geq 0\\\\\left \{ {{x\geq 0} \atop {x^{2} -2x-4\geq 0}} \right. \\\left \{ {{x\leq 0} \atop {x^{2} -2x-4\leq 0}} \right. \\\\\\\left \{ {{x\leq 0} \atop {x nalezy < 1-\sqrt{5}, 1+\sqrt{5}] }} \right. \\\left \{ {{x\geq 0} \atop {x nalezy [1-\sqrt{5}, 1+\sqrt{5}] }} \right. \\\\x nalezy [1+\sqrt{5} , +nieskonczonosc>\\xnalezy [1-\sqrt{5}, 0]\\\\x nalezy [1 - \sqrt{5}, 0] U [1 + \sqrt{5}, +nieskonczonosc>[/tex]