Odpowiedź:
Obwód=4√13cm
Pole=12 cm²
Szczegółowe wyjaśnienie:
Pole rombu możemy obliczyć ze wzoru, gdzie d1 i d2 są wartościami podanymi w zadaniu.
[tex]P=\frac{d1\cdot d2}{2}=\frac{4\cdot6}{2}=\frac{24}{2}=12cm^{2}[/tex]
Zauważ, żeby oblicz obwód należy skorzystać z tego, że przekątne rombu przecinają się w połowie i pod kątem prostym. Dostajemy z tego 4 takie same trójkąty prostokątne o przyprostokątnych długości 2cm i 3cm. Stosując twierdzenie Pitagorasa można obliczyć długość jednego boku rombu.
[tex]c^{2} = 2^{2} +3^{2}= 4+9=13\\c^{2} = 13\\c=\sqrt{13}[/tex]
c = długość jednego boku rombu
Jako że wszystkie boki rombu są takie same, aby obliczyć obwód wystarczy pomnożyć długość boku razy 4:
Obwód = [tex]4 \cdot\sqrt{13} =4\sqrt{13}[/tex]