A=(-7, -4) B=(2, 10) C=(-2, 8)
a) długość średnicy AB:
|AB|² = [2-(-7)]² + [10-(-4)]² = (2+7)² + (10+4)² = 9² + 14² = 81 + 196 = 277
|AB| = √277
b) Środek okręgu jest jednocześnie środkiem jego średnicy
c) Punkt leży wewnątrz koła jeśli jego odległość jest mniejsza od długości promienia tego koła (r=0,5|AB| = 0,5√277), na obwodzie koła, jeśli odległość jest równa promieniowi i na zewnątrz koła, jeśli odległość jest większa od długości promienia.
Punkt C leży wewnątrz koła o średnicy AB