[tex]6x^{2}-5x-4 < 0\\\\a = 6, \ b=-5, \ b = -4\\\\\Delta = b^{2}-4ac = (-5)-4\cdot6\cdot(-4) = 25+96 = 121\\\\\sqrt{\Delta} = \sqrt{121} = 11\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-(-5)-11}{2\cdot6} = \frac{-6}{12} = -\frac{1}{2}\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{-(-5)+11}{12} = \frac{16}{12} = \frac{4}{3} = 1\frac{1}{3}\\\\a > 0, \ to \ ramiona \ paraboli \ skierowane \ do \ gory\\\\x \in (-\frac{1}{2}; 1\frac{1}{3})[/tex]