Odpowiedź :
Odpowiedź
Zadanie 8.
Wyrażenie opisane w zadaniu można zapisać i następnie uprościć w następujący sposób
[tex]\left( 6000 + c \right) \cdot \left( 10c + 6 \right) - 6c =\\\\6000 \cdot 10c + 6000 \cdot 6 + c \cdot 10c + c \cdot 6 - 6 \cdot c =\\\\60000c + 36000 + 10c^2 =\\\\10 \cdot \left( 6000c + 3600 + c^2 \right)[/tex]
Stąd wynika podzielność przez 10 opisanego wyrażenia.
Zadanie 9a.
(a + b) - (3a - 2b) - (a - 3b) = a +b - 3a + 2b - a + 3b = -3a + 6b
Zadanie 9b.
(3x - y + 1) - (x + y) = 3x - y + 1 - x - y = 2x - 2y + 1
Szczegółowe wyjaśnienie
W zależności od tego co jest uważane za najprostszą postać rozwiązania w zadaniu 9 można zapisać też inaczej.
Zadanie 9a.
(a + b) - (3a - 2b) - (a - 3b) = a +b - 3a + 2b - a + 3b = -3a + 6b = 3(2b -a)
Zadanie 9b.
(3x - y + 1) - (x + y) = 3x - y + 1 - x - y = 2x - 2y + 1 = 2(x - y) + 1