[tex]\displaystyle\\\int \left(5x^2-\dfrac{1}{x}+\dfrac{1}{x^4}\right)\, dx=\\\\\int 5x^2\, dx-\int \dfrac{1}{x}\, dx+\int \dfrac{1}{x^4}\, dx=\\\\5\int x^2\, dx-\ln|x|-\dfrac{1}{3x^3}+C=\\\\5\cdot\dfrac{x^3}{3}-\ln|x|-\dfrac{1}{3x^3}+C=\\\\\dfrac{5x^3}{3}-\ln|x|-\dfrac{1}{3x^3}+C=\\\\\dfrac{5x^6}{3x^3}-\ln|x|-\dfrac{1}{3x^3}+C=\\\\\dfrac{5x^6-1}{3x^3}+\ln|x|+C[/tex]