Odpowiedź :
Odpowiedź:
sin∝=0,25 = 1/4 ∧ zał. ∡∝ - ostry
sin²∝ + cos²∝ = 1 ∧ sin∝ = 1/4
↓
(1/4)² + cos²∝ = 1
cos²∝ = 1 - 1/16
cos²∝ = 15/16 ∧ ∡∝ - ostry
↓
cos∝ = √15/4
tg∝ = sin∝/cos∝ ∧ cos∝ = √15/4 ∧ sin∝ = 1/4
↓
tg∝ = 1/4 ÷ √15/4
tg∝ = 1/4 × 4/√15
tg∝ = 1/√15 usuwam niewymierność
tg∝ = 1/√15 × √15/√15
tg∝ = √15/15
2tg∝ - 4 =? tg∝ = √15/15
↓
2×√15/15 - 4 = 2√15/15 - 4 = 2√15/15 - 60/15= (2√15 - 60)/15
Odp. 2tg∝ - 4 = (2√15 - 60)/15 gdy sin∝ = 1/4 ∧ ∡∝ jest ostry.
Odpowiedź:
[tex]2tg\alpha = \frac{2\sqrt{15}-60}{15}[/tex]
Szczegółowe wyjaśnienie:
[tex]sin\alpha = 0,25 = \frac{25}{100} = \frac{1}{4}\\\\sin^{2}\alpha + cos^{2}\alpha = 1\\\\cos^{2}\alpha = 1 - sin^{2}\alpha = 1 - (\frac{1}{4})^{2} = \frac{16}{16} -\frac{1}{16} = \frac{15}{16}\\\\cos\alpha = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{\sqrt{16}} = \frac{\sqrt{15}}{4}\\\\tg\alpha = \frac{sin\alpha}{cos\alpha} = \frac{\frac{1}{4}}{\frac{\sqrt{15}}{4}} = \frac{1}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{15}}{5}[/tex]
[tex]2tg\alpha - 4 = 2\cdot\frac{\sqrt{15}}{15}-4=\frac{2\sqrt{5}}{15}-4 =\frac{2\sqrt{15}-60}{4}[/tex]