Odpowiedź:
Zad 1
[tex]1=1^{2} , 4=2^{2} , 9=3^{2} ,25=5^{2}\\a_{n} =n^{2}[/tex]
Zad. 2
[tex]a_{n+1} =2- \frac{4}{n+1+1} =2- \frac{4}{n+2}\\a_{n+1}-a_{n}=2- \frac{4}{n+2}-2+ \frac{4}{n+1}=- \frac{4}{n+2}+ \frac{4}{n+1}=- \frac{4*(n+1)}{n+2}+\frac{4*(n+2)}{n+1}=-\frac{4n+4}{(n+2)(n+1)} +\frac{4n+8}{(n+1)(n+2)}=\frac{-4n-4+4n+8}{(n+2)(n+1)} =\frac{4}{(n+1)(n+2)} >0[/tex]
Ciag rosnacy
Szczegółowe wyjaśnienie: