Aga
Rozwiązane

Proszę o zapisanie w postaci jednej potęgi:

[tex]a) \ 2^{4}\cdot4^{3}\cdot8^{4}:16=\\\\b) \ 81^{3}:27^{2}:3=\\\\c) \ \dfrac{(26-5^{0})^{2}\cdot125}{5^{4}}=[/tex]

[Wakacyjna lista wyzwań (2021) ; 21]



Odpowiedź :

Hej!

Obliczenia :

[tex]a] \ 2^4\cdot4^3\cdot8^4:16=2^4\cdot(2^2)^3\cdot(2^3)^4:2^4=\\\\=2^4\cdot2^{2\cdot3}\cdot2^{3\cdot4}:2^4=2^4\cdot2^6\cdot2^{12}:2^4=2^{4+6+12-4}=\boxed{2^{18}}\\\\b] \ 81^3:27^2:3=(3^4)^3:(3^3)^2:3=3^{4\cdot3}:3^{3\cdot2}:3=\\\\=3^{12}:3^6:3=3^{12-6-1}=\boxed{3^5}\\\\c] \ \frac{(26-5^0)^2\cdot125}{5^4}=\frac{(26-1)^2\cdot5^3}{5^4}=\frac{25^2\cdot5^3}{5^4}=\frac{(5^2)^2\cdot5^3}{5^4}=\frac{\not5^4\cdot5^3}{\not5^4}=\boxed{5^3}[/tex]

Wykorzystane wzory działań na potęgach :

[tex]a^m\cdot a^n=a^{m+n}\\\\a^m:a^n=a^{m-n}\\\\(a^m)^n=a^{m\cdot n}\\\\a^0=1; \ a\neq0[/tex]