Odpowiedź
1a.
[tex]-1 \leq x \leq 8[/tex]
1b.
[tex]x < - \:\dfrac {\: 7 \:} 5 ~~ \text{lub} ~~ -1 < x[/tex]
2a.
2b.
[tex]y = 2x + 4[/tex]
2c.
[tex]y = \dfrac {\: 1 \:} 3 x + \dfrac {\: 14 \:} 3 =\dfrac {\: 1 \:} 3 x + 4 \dfrac{\: 2 \:} 3[/tex]
Szczegółowe wyjaśnienia
1a.
[tex]x^2 - 7x - 8 \leq 0\\\\(x - 8) \cdot (x + 1) \leq 0\\\\-1 \leq x \leq 8[/tex]
1b.
[tex]7 - x \cdot (5x + 2) < 0\\\\7 - 5x^2 - 2x < 0\\\\-5x^2 - 2x + 7 < 0 ~~~~~~~~~ \text{alternatywnie} ~~ -x^2 - \dfrac 2 5 x + \dfrac 7 5 < 0\\\\-(x - 1) \cdot (5x + 7) < 0 ~~~~ \text{alternatywnie} ~~ -(x - 1) \cdot (x + \dfrac 7 5) < 0\\\\\\x < - \:\dfrac {\: 7 \:} 5 ~~ \text{lub} ~~ -1 < x[/tex]
2a.
2b.
2c.