Witaj :)
[tex]a)\ \frac{2x-3}{4}<5/ \cdot 4\\\\2x-3<20 \\\\2x<23/ :2\\\\x<\frac{23}{2} \\\\\huge \boxed {x\in (-\infty;\frac{23}{2}) }[/tex]
[tex]b) \frac{x+2}{3}\geq \frac{x-3}{5} / \cdot 15\\\\5(x+2)\geq 3(x-3)\\\\5x+10\geq 3x-9\\\\5x-3x\geq -9-10\\\\2x\geq -19/ :2\\\\x\geq -\frac{9}{2} \\\\\huge \boxed {x\in <-\frac{19}{2};+\infty )}[/tex]
[tex]c)\ \frac{3x-1}{3} <1-\frac{4x-3}{2}/ \cdot 6\\\\2(3x-1)<6-3(4x-3)\\\\6x-2<6-12x+9\\\\6x+12x<15+2\\\\18x<17/ :18\\\\x<\frac{17}{18} \\\\\huge \boxed {x\in (-\infty;\frac{17}{18}) }[/tex]
Osie liczbowe w załączniku