Odpowiedź :
Cześć ;-)
Od a) do b)
[tex]a] \ \sqrt{\frac{5^3\cdot125}{25^{-1}}}=\sqrt{\frac{5^3\cdot5^3}{\frac{1}{25}}}=\sqrt{\frac{5^6}{\frac{1}{25}}}=\frac{\sqrt{5^6}}{\sqrt{\frac{1}{25}}}=\frac{5^3}{\frac{1}{5}}=5^3\cdot5=5^4=625\\\\b] \ \frac{1}{2}\cdot8^{\frac{1}{3}}\cdot(\frac{1}{16})^{-2}=\frac{1}{2}\cdot\sqrt[3]8\cdot16^2=\frac{1}{2}\cdot2\cdot256=256[/tex]
Od c) do d)
[tex]c] \ \frac{1}{\sqrt3}+\frac{1}{\sqrt3}+\frac{1}{\sqrt3}=\frac{3}{\sqrt3}=\frac{3\sqrt3}{3}=\sqrt3\\\\d] \ \sqrt[5]{5\sqrt[3]{25}}=\sqrt[5]{5\cdot5^{\frac{2}{3}}}=\sqrt[5]{5^{1\frac{2}{3}}}=\sqrt[5]{5^{\frac{5}{3}}}=5^{\frac{5}{3}\cdot\frac{1}{5}}=5^{\frac{1}{3}}=\sqrt[3]5[/tex]
Pozdrawiam!