Odpowiedź :
Cwiczenie 4.
a)
[tex]\sqrt{4*81}=2*9=18\\\sqrt{25*0,36}=5*0,6=3\\\sqrt{0,09*361}=0,3*19=5,7[/tex]
b)
[tex]\sqrt{\frac{121}{144}}=\frac{11}{12}\\\sqrt{\frac{361}{400}}=\frac{19}{20}\\\sqrt{\frac{576}{625}}=\frac{24}{25}[/tex]
c)
[tex]\sqrt{2}*\sqrt8=\sqrt{16}=4\\\sqrt6*\sqrt{1,5}=\sqrt9=3\\\sqrt2*\sqrt5*\sqrt{10}=\sqrt{10}*\sqrt{10}=10[/tex]
d)
[tex]\frac{\sqrt{54}}{\sqrt6}=\sqrt{\frac{54}6}=\sqrt9=3\\\frac{\sqrt3}{\sqrt12}=\sqrt{\frac3{12}}=\sqrt{\frac1{4}}=\sqrt{0,25}=0,5\\\frac{\sqrt{10}*\sqrt{14}}{\sqrt{35}}=\frac{\sqrt{140}}{\sqrt{35}}=\sqrt{\frac{140}{35}}=\sqrt4=2[/tex]
Zadanie 1.
[tex]a) \sqrt{121}+\sqrt{49}-\sqrt{225}=11+7-15=18-15=3\\b) \sqrt{196}-\sqrt{196}-\sqrt{144}=-\sqrt{144}=-12\\c) \sqrt{0,25}+\sqrt{1,44}+\sqrt{6,25}=\sqrt{\frac{25}{100}}+\sqrt{\frac{144}{100}}+\sqrt{\frac{625}{100}}=\frac{5}{10}+\frac{12}{10}+\frac{25}{10}=\frac{42}{10}=4,2[/tex]
[tex]d) \sqrt{3,61}=\sqrt{1,21}-\sqrt{0,09}=1,9-1,1-0,3=0,5[/tex]
[tex]e) \sqrt{\frac{81}{400}}+\sqrt{\frac9{100}}-\sqrt{\frac{64}{25}}=\frac{9}{20}+\frac3{10}-\frac{8}{5}=\frac9{20}+\frac6{20}-\frac{32}{20}=\frac{47}{20}=2,35\\f) \sqrt{3\frac6{25}}-\sqrt{2\frac14}+\sqrt{1\frac79}=\sqrt{\frac{81}{25}}-\sqrt{\frac{9}4}+\sqrt{\frac{16}9}=\frac{9}5-\frac32+\frac43=\frac{54}{30}-\frac{45}{30}+\frac{40}{30}=\frac{49}{30}=1\frac{19}{30}[/tex]