Odpowiedź :
[tex]zad.1)\\\\(3+x)( 3-x)\geq x(5-x)-1\\\\9-x^2\geq 5x-x^2-1\\\\-x^2+x^2-5x\geq -1-9\\\\-5x\geq -10\ \ |:(-5)\\\\x\leq 2\\\\x\in(-\infty ,2>[/tex]
[tex]zad.2)\\\\5^{2+\sqrt{3}}:5^{3+\sqrt{3}}=5^{2+\sqrt{3}-(3+\sqrt{3})} =5^{2+\sqrt{3}- 3-\sqrt{3} }=5^{-1}=\frac{1}{5}[/tex]
1.
[tex](3+x)(3-x) \geq x(5-x)-1\\\\9 - x^{2} \geq 5x-x^{2}-1\\\\-x^{2}+x^{2}-5x \geq -1-9\\\\-5x \geq -10 \ \ /:(-5)\\\\x \leq 2\\\\x \in \ (-\infty; 2][/tex]
2.
[tex]5^{2+\sqrt{3}}:5^{3+\sqrt{3}}=5^{2+\sqrt{3}-(3+\sqrt{3})}= 5^{2+\sqrt{3}-3-\sqrt{3}} = 5^{-1} = \frac{1}{5}[/tex]
Wyjaśnienie
Wykorzystano wzory:
[tex](a+b)(a-b) = a^{2}-b^{2}\\\\a^{m}:a^{n} = a^{m-n}[/tex]