Oblicz...
[tex] \sqrt{12.25} = [/tex]
[tex] \sqrt{ \frac{12}{75} } = [/tex]
[tex] \sqrt{7 \frac{9}{16} }= [/tex]
[tex] \sqrt{( - 7) ^{2} } = [/tex]
[tex] \sqrt{8 \times 162} = [/tex]
[tex] \sqrt{4.41} = [/tex]
[tex] \sqrt{ \frac{98}{128} } = [/tex]
[tex] \sqrt{4 \sqrt{16} } = [/tex]



Odpowiedź :

Witaj :)

[tex]\large \boxed{\sqrt{12,25}=\sqrt{\frac{1225}{100} } =\sqrt{\frac{49}{4} } =\frac{\sqrt{49} }{\sqrt{4} } =\frac{7}{2}=3\frac{1}{2} }[/tex]

[tex]\large \boxed{\sqrt{\frac{12}{75} } =\sqrt{\frac{4}{25} }=\frac{\sqrt{4} }{\sqrt{25} } =\frac{2}{5} }[/tex]

[tex]\large \boxed{\sqrt{7\frac{9}{16} } =\sqrt{\frac{121}{16} } =\frac{\sqrt{121} }{\sqrt{16} } =\frac{11}{4} =2\frac{3}{4} }[/tex]

[tex]\large \boxed{\sqrt{(-7)^2} =\sqrt{(-7)\cdot (-7)} =\sqrt{49} =7}[/tex]

[tex]\large \boxed{\sqrt{8\cdot 162} =\sqrt{1296} =36}[/tex]

[tex]\large \boxed{\sqrt{4,41} =\sqrt{\frac{441}{100} } =\frac{\sqrt{441} }{\sqrt{100} } =\frac{21}{10}=2\frac{1}{10} }[/tex]

[tex]\large \boxed{\sqrt{\frac{98}{128} } =\sqrt{\frac{49}{64} }=\frac{\sqrt{49} }{\sqrt{64} }=\frac{7}{8} }[/tex]

[tex]\large \boxed{\sqrt{4\sqrt{16} } =\sqrt{4\cdot 4} =\sqrt{4} \cdot \sqrt{4} =2\cdot 2 = 4}[/tex]

Zastosowane wzory na pierwiastki:

[tex]\large \boxed{\sqrt{\frac{x}{y} } =\frac{\sqrt{x} }{\sqrt{y} } }[/tex]

[tex]\large \boxed{\sqrt{x\cdot y} =\sqrt{x} \cdot \sqrt{y} }[/tex]