Odpowiedź :
Odpowiedź:
[tex]a)\ \ \sqrt{225:9}-\sqrt{2\frac{7}{9}:1\frac{9}{16}}=\sqrt{25}-\sqrt{\frac{25}{9}:\frac{25}{16}}=5-\sqrt{\frac{\not25}{9}\cdot\frac{16}{\not25}}=5-\sqrt{\frac{16}{9}}=5-\frac{4}{3}=\\\\=5-1\frac{1}{3}=4\frac{3}{3}-1\frac{1}{3}=3\frac{2}{3}[/tex]
[tex]b)\ \ \sqrt[3]{-27:64}+\sqrt[3]{0,125:\frac{1}{8}}=\sqrt[3]{-\frac{27}{64}}+\sqrt[3]{\frac{125}{1000}:\frac{1}{8}}=-\frac{3}{4}+\sqrt[3]{\frac{1}{8}:\frac{1}{8}}=-\frac{3}{4}+\sqrt[3]{1}=\\\\=-\frac{3}{4}+1=-\frac{3}{4}+\frac{4}{4}=\frac{1}{4}[/tex]
[tex]c)\ \ \sqrt{1,96:0,04}-\sqrt[3]{-8:2\frac{10}{27}}=\sqrt{49}-\sqrt[3]{-8:\frac{64}{27}}=7-\sqrt[3]{-\not8^1\cdot\frac{27}{\not64_{8}}}=\\\\=7-\sqrt[3]{-\frac{27}{8}}=7-(-\frac{3}{2})=7+\frac{3}{2}=7+1\frac{1}{2}=8\frac{1}{2}[/tex]
[tex]d)\ \ \sqrt[3]{0,008:(-15\frac{5}{8})}+\sqrt{81:1,44}=\sqrt[3]{\frac{8}{1000}:(-\frac{125}{8})}+\sqrt{81:\frac{144}{100}}=\\\\=\sqrt[3]{\frac{1}{125}\cdot(-\frac{8}{125})}+\sqrt{81:\frac{36}{25}}=\sqrt[3]{\frac{1}{125}}\cdot\sqrt[3]{-(\frac{8}{125})} +\sqrt{\not81^9\cdot\frac{25}{\not36_{4}}}=\\\\\frac{1}{5}\cdot(-\frac{2}{5}) +\sqrt{\frac{225}{4}}=-\frac{2}{25}+\frac{15}{2}=-\frac{2}{25}+7\frac{1}{2}=-\frac{4}{50}+7\frac{25}{50}=7\frac{21}{50}[/tex]