Odpowiedź:
Szczegółowe wyjaśnienie:
a) (125*15)/(3³*5^4) = (5³*3*5)/(3³*5^4) = 1/9
b) [(3^5)^4 *6^4]/(9^7 *4²) = (3^20 * 3^4 * 2^4)/(3^14 * 2^4) = 3^10
c) (9³ * 4^4)/(6^10) = (3^6 * 2^8)/(2^10 * 3^10) = 1/(3^4 * 2²) = 1/(81 * 4) = 1/324
d) (0,25³ : 0,5³)/5³ = (25/100 : 5/10)³/5³ = (1/4 * 2)³/5³ = (1/2 : 5)³= (1/10)³ = 0,001
e) (8^5 * 4³)² * 25²/(10^4 * 2^10) = (2^15 * 2^6)² * 5^4/(2^4 * 5^4 *2^10)=
= (2^42 * 5^4)/(2^14 * 5^4) = 2^28
f) (64² * 36^4)/(6³ * 2^6) = (2^12 * 6^8)/(6³ * 2^6) = 2^6 * 6^5