Odpowiedź :
Odpowiedź:
Szczegółowe wyjaśnienie:
8.129
c)
(4x-1)²x + (1-4x)x² - (4x-1) = (4x-1)²x - (4x-1)x² - (4x-1) =(4x-1)(4x²-x-x²-1) =
= (4x-1)(3x²-x-1)
Δ=1+12=13
x1 = (1+√13)/6, x2 = (1-√13)/6
czyli:
3x²-x-1 = 3(x-1/6-√13/6)(x-1/6+√13/6) czyli:
(4x-1)(3x²-x-1) = 3*(4x-1)(x-1/6-√13/6)(x-1/6+√13/6)
e)
(-1-x)(x²-1) - (x+1)² = -(x+1)(x+1)(x-1) - (x+1)² = (x+1)²(-x+1-1) = -x(x+1)²
8. 129
c)
[tex](4x-1)^{2}x+(1-4x)x^{2}-(4x-1)=\\\\=(4x-1)^{2}x - (4x-1)x^{2}-(4x-1)=\\\\=(4x-1)[(4x-1)x - x^{2}-1]=\\\\=(4x-1)(4x^{2}-x-x^{2}-1)=\\\\=(4x-1)(3x^{2}-x-1)[/tex]
Sprawdźmy, czy trójmian 3x² - x - 1 = 0 ma pierwiastki rzeczywiste
[tex]\Delta = (-1)^{2}-4\cdot3\cdot(-1)= 1+12 = 13\\\\\sqrt{\Delta} = \sqrt{13}\\\\x_1 = \frac{1-\sqrt{13}}{2\cdot3} = \frac{1-\sqrt{13}}{6}\\\\x_2 = \frac{1+\sqrt{13}}{2\cdot3} = \frac{1+\sqrt{13}}{6}\\\\zatem\\\\(4x-1)x + (1-4x)x^{2}-(4x-1) = 3(4x-1)(x - \frac{1-\sqrt{13}}{6})(x-\frac{1+\sqrt{13}}{6})[/tex]
e)
[tex](-1-x)(x^{2}-1)-(x+1)^{2}=\\\\=-(1+x)(x-1)(x+1)-(x+1)^{2}=\\\\=-(x+1)^{2}(x-1)-(x+1)^{2}=\\\\=-(x+1)^{2}(x-1 +1)=\\\\=-(x+1)^{2}\cdot x = -x(x+1)^{2}[/tex]