Obliczenia
[tex]\frac{(125\cdot5^2)^3}{\sqrt{625}\cdot25}=\frac{(5^3\cdot5^2)^3}{\sqrt{25^2}\cdot25}=\frac{(5^{3+2})^3}{25\cdot25}=\frac{(5^5)^3}{5^2\cdot5^2}=\frac{5^{5\cdot3}}{5^{2+2}}=\frac{5^{15}}{5^4}=5^{15-4}=5^{11}\\\\\huge\boxed{\text{Odp}. \ \text{B}}[/tex]
Wykorzystane wzory
[tex]a^m\cdot a^n=a^{m+n}\\\\a^m:a^n=a^{m-n}\\\\(a^m)^n=a^{m\cdot n}[/tex]