[tex]zad.1\\\\2\sqrt[3]{\dfrac{1}{4} } =\sqrt[3]{2^{3} \cdot \dfrac{1}{4}} =\sqrt[3]{8 \cdot \dfrac{1}{4}} =\sqrt[3]{2} \\\\zad.2\\\\4\sqrt[3]{-2} =\sqrt[3]{4^{3} \cdot (-2)} =\sqrt[3]{64\cdot (-2)} =\sqrt[3]{-128} \\\\zad.3\\\\1,2\sqrt{\dfrac{1}{7} } =1\dfrac{2}{10} \sqrt{\dfrac{1}{7} }=1\dfrac{1}{5} \sqrt{\dfrac{1}{7} }=\dfrac{6}{5} \sqrt{\dfrac{1}{7} }=\sqrt{\dfrac{6^{2} }{5^{2} } \cdot \dfrac{1}{7} }=\sqrt{\dfrac{36}{25} \cdot \dfrac{1}{7} } =\sqrt{\dfrac{36}{175} }[/tex]
Korzystałam ze wzoru:
[tex]\sqrt[n]{x^{n} } =x^{x\cdot \frac{1}{n} }=x^{1} =x[/tex]